NoCap: Fact Checking with Al

Software Design Document

Names:

Anthony Ciero,
Varun Doddapaneni,
Joshua Pechan,
Thomas
Chamberlain

Advisor:

Dr. Marius Silaghi
Date: (09/29/2025)



TABLE OF CONTENTS
1. Introduction
1.1 Purpose
1.2 Scope
1.3 Overview
1.4 Definitions and Acronyms
2. System Overview
3. System Architecture
3.1 Architectural Design
3.2 Decomposition Description
3.3 Design Rationale
4. Data Design
4.1 Data Description
4.2 Data Dictionary
5. Component Design
5.1 Frontend
5.2 Backend
5.3 Database
5.4 External Connection
6. Human Interface Design
6.1 Overview of User Interface
6.2 Screen Images
6.3 Screen Objects and Actions



1. Introduction
1.1 Purpose

The purpose of the “NoCap” project is to evaluate media sources and texts,
and provide an evaluation rating to the user. The purpose of this software
design document is to showcase the architecture and design of the project.

1.2 Scope

The software will be a website that allows users to figure out how credible a
source is. The website also allows other viewers to see the authenticity
rating of these articles stored in our database on the website. Our software
is for any user who wants to evaluate any article or any piece of text, and
obtain a score on how credible it is.

1.3 Overview

This document provides a description for the architecture of our software, as
well as our architecture diagram and visualization of our user interface.

1.4 Definitions and Acronyms
Al: Artificial intelligence
API: Application Programming Interface
AWS: Amazon Web Services
URL: Uniform Resource Locator
WCAG: Web Content Accessibility Guidelines

2. System Overview

General Description:
The system is a web-based application that is complemented by a chrome
extension. It is designed to evaluate the authenticity of text or web articles.
Users can submit raw text or a URL, and the system returns an authenticity
score along with a detailed report explaining the reasoning. The platform
also maintains aggregate credibility scores for publishers, allowing users to
see broader trends in information credibility. A database that the score and
reasoning will be stored in will be created and will be stored based on the
URL so any raw text analysis will not be stored in the database.

Context and Design:
The system relies on Amazon Bedrock for Al-based text analysis and uses
cloud infrastructure to process and return results quickly. It is designed to be
accessible across all major browsers and devices, complying with WCAG
accessibility standards. The chrome extension allows for seamless
in-context analysis without leaving the users browsing experience. The
chrome extension will solely be on google chrome.



Background Information:

With the growing challenge of misinformation online, users need a fast and
reliable way to assess article credibility. This system combines a detailed
assessment of articles showing the location and explanation of
misinformation and a convenient and easy to use interface.

3. System Architecture

Inputs

Outputs

3.1

Architectural Design

Text Entry

Front End Back End

URL Entry

Python
FastAPI
React Ul >

AWS Bedrock

Node.js Nova Pro

Authenticity Rating

Ratings breakdown React Router
SQLDB

Publisher aggregate
scores

3.2

3.3

Decomposition Description

The overall architecture of the project can be divided into the following:
Inputs, Outputs, Front End, Back End, and external connections. The
inputs are the text entry or URL to be entered. These inputs are what the
user will want to be evaluated by the application. These inputs are entered
into the front end UlI, built by React.

The entered data is routed to the back end, which is built using Python, and
utilizes the FastAPI. Node.js enables the JavaScript code that the front end
uses to be executed outside of the web browser. The backend will have
functions that pass off data to the external connections on AWS, including
the Nova Pro Al model. The back end utilizes prompt engineering, which
includes the LangChain and LangGraph modules, to instruct the model on
what to do.

The resulting data is the authenticity rating and insights on the input. If a
URL was entered, the results are stored into the database under the
corresponding publisher. The results are passed back to the front end, and
results in the outputs that the user can see.

Design Rationale


http://node.js

The way the architecture in 3.1 is organized is intended to reflect a single
“flow” or “process” that the user will go through. They will enter an input,
which is entered into the front end. This is then processed by the back end
with the help of the AWS external connections, then the transformed data is
passed back to the front end, which is displayed as the output. This specific
architecture was chosen because of its relative simplicity and ease of use.
We want an application that is fast and easy to use, and our choices reflect
this.

4. Data Design

4.1

4.2

Data Description

Our Al will either read the raw text provided by the user or will take the
URL and read the article and take the text. It will then divide it into tokens,
where the Al will analyze which tokens can be considered false or
misinformation. The website will then store the articles along with their
authenticity score and authenticity report.

Data Dictionary

Our input data will consist of two possible types. Raw text can be inputted
by the user and our Al will take this and tokenize it into words. This is used
to determine the authenticity score and report, but raw text data will not be
saved in our database. More commonly, a URL can be inputted. When this
happens, our Al will write the authenticity scores and reports, but unlike
with raw text, if the specific inputted URL is not in our database, we save it
along with its score and report and save it in our database, where users will
be able to view articles previously inputted by other users and categorize
them by publisher.

5. Component Design

5.1 Front End (React Ul and Router)

e Purpose: Collects user input (text or URL) and displays the authenticity

rating and breakdown.

5.2 Back End (Python, FastAPI, Node.js)

e Purpose: Processes requests from the front end, routes them to external

services, and returns results.

5.3 Database

e Purpose: Stores URL results and publisher authenticity data for later

reference. Sorted under publisher.


http://node.js

5.4 External Connection (AWS Bedrock, Nova Pro)

e Purpose: Performs the Al model inference to determine authenticity.

6. Human Interface Design

6.1 Overview of User Interface

1.

The user navigates to the NoCap website and pastes an article URL
or raw text into a submission box.

2. Click the submit button.
3.

The user is then redirected to the report page that shows:
a. Article metadata - title, author, publication date, domain
b. the authenticity score - score for the site determined by the Al
c. analysis report - report containing any and all reasoning for
the authenticity score
Users can then navigate to the database page to find other articles
or see aggregate scores from submitted authors.



6.2 Screen Images

Home Page



Report Page




Database Page



6.3 Screen Objects and Actions
6.3.1 Home Page

Text/URL Entry Box: Small box where users can paste their text or
URL they want to fact check

Submit Button: Button next to text/URL entry box used to enter the
input in the box. Button will not work if the text/URL entry box is blank.
Example Database Entries: On the home page below the entry box
will show three cards of example articles and reports. These will be to
show and explain to users the Al’'s scoring system and example
reports. Users can click on these to view their full report in the report
page.

Page Navigation Center: Navigation bar on side used for going to
other pages. Consists of Home button, Report button, and Database
button. The Home button brings the user to this page. The Report
button will allow users to go to the most recently viewed report. The
button will not be available if the user has not generated a report,
viewed one of the example article cards below the entry box, or
entered the database to select an article. The Database button brings
the user to the page where users can view the stored articles. This
appears on all pages in order to navigate between them easily.

6.3.2 Report Page

Article Meta Data: Information about the article like article title,
publisher, author, and publication date.

Authenticity Score: Score generated by Al, numerically ranking the
authenticity of the given article.

Authenticity Report Abstract: Small abstract about the authenticity
report. In place for easy understanding of larger authenticity reports.
Authenticity Report: Report generated by Al, reporting and explaining
what parts of the article it deemed as fact or fiction, its reasoning
behind the authenticity score, and the authenticity of the article as a
whole.

Page Navigation Center

6.3.3 Database Page

Article Search Bar: Search bar at the top of the page that allows
users to search specific articles or keywords to check our database
for pre-authenticated information about topics.

Article Filter Options: Allows users to filter by different options such as
alphabetically, highest/lowest authenticity score, publication date
oldest/newest.

Search Button: Button next to the article search box used to enter the
input in the box.

Publisher Authenticity Cards: Cards that show the specific publishing
company, their average authenticity score based on articles in our
database, and the three articles with the highest authenticity score, as
well as a show more option expanding the card to view more articles
of the same publisher.



Article Cards: Cards within the publisher cards for a specific article,
showing article name and authenticity score. Clicking on the article

will bring the user to the report page of the given article.
Page Navigation Center



	Software Design Document 
	1.​Introduction 
	1.1​Purpose 
	1.2​Scope 
	1.3​Overview 
	1.4​Definitions and Acronyms 
	2. System Overview 
	3. System Architecture 
	3.1​Architectural Design 
	3.2​Decomposition Description 
	3.3​Design Rationale 
	4. Data Design 
	4.1​Data Description 
	4.2​Data Dictionary 
	5. Component Design 
	5.1 Front End (React UI and Router) 

	6. Human Interface Design 
	6.1​Overview of User Interface 
	6.2​Screen Images 
	 
	Home Page 
	Report PageDatabase Page 
	6.3​Screen Objects and Actions 

